一、鎳基合金定義
鎳基合金一般以Ni含量超過30wt%之合金稱之,常見產(chǎn)品之Ni含量都超過50wt%, 由于具有超群的高溫機械強度與耐蝕性質(zhì),與鐵基和鈷基合金合稱為超合金(Superalloy),一般是應(yīng)用在540℃以上的高溫環(huán)境,并依其使用場合,選用不同合金設(shè)計,多用于特殊耐蝕環(huán)境、高溫腐蝕環(huán)境、需具備高溫機械強度之設(shè)備。常應(yīng)用于航天、能源、石化工業(yè)或特殊電子/光電等領(lǐng)域。
應(yīng)用領(lǐng)域
產(chǎn)品要求特性
產(chǎn)品用途
航天工業(yè)
*溫下維持良好機械強度
飛機引擎、燃?xì)鉁u輪機、引擎閥門
能源工業(yè)
良好之抗高溫硫化、高溫氧化特性
熔爐零件、隔熱層、熱處理產(chǎn)業(yè)、石油與天然氣產(chǎn)業(yè)
石化工業(yè)
耐水溶液(酸、堿、氯離子)腐蝕
海水淡化廠、石化輸送管線
電子/光電一般工業(yè)
一般耐蝕或耐高溫程度較低之環(huán)境
電池殼件、導(dǎo)線架,計算機監(jiān)視器網(wǎng)罩
二、起源與發(fā)展
鎳基合金是30年代后期開始研制的,英國于1941年首先生產(chǎn)出鎳基合金 Nimonic75(Ni-20Cr-0.4Ti);為了提高潛變強度又添加Al,研制出Nimonic 80(Ni-20Cr- 2.5Ti-1.3Al);而美國于40年代中期,俄羅斯于40年代后期,中國于50年代中期也先后開發(fā)出鎳基合金。鎳基合金的發(fā)展包括兩個方面,即合金成分的改良和生產(chǎn)技術(shù)的革新。
如50年代初,真空熔煉技術(shù)的發(fā)展,為煉制含高Al和Ti 的鎳基合金創(chuàng)造了條件,而帶動了合金強度與使用溫度的大幅提高。50年代后期,由于渦輪葉片工作溫度的提高,要求合金有更高的高溫強度,但是合金的強度高了,就難以變形,甚至不能變形,于是采用精密鑄造技術(shù),發(fā)展出一系列具有良好高溫強度的鑄造合金。60年代中期發(fā)展出性能更好的方向性結(jié)晶和單晶高溫合金,以及粉末冶金高溫合金。
為了滿足艦船和工業(yè)燃?xì)廨啓C的需要,60年代以來還發(fā)展出一批抗熱腐蝕性能較好、組織穩(wěn)定的高Cr鎳基合金。在從40年代初到70年代末大約40年的時間內(nèi),鎳基合金的工作溫度從700 提高1,100℃,平均每年提高10℃左右。時至今日,鎳基合金之使用溫度已可超過1,100℃,從前述最初成份簡單之Nimonic75 合金,到近期發(fā)展出之MA6000 合金,在1,100℃時拉伸強度可達(dá)2,220MPa、屈服強度為192MPa;其1,100℃/137MPa條件下之持久強度約達(dá)1,000小時,可用于航空發(fā)動機葉片。
三、鎳基合金之特色
鎳基合金是超合金中應(yīng)用廣泛、強度高的材料。超合金之名稱即源自于材料特色。
包括:
(1)性能超優(yōu)異:高溫下可維持高強度,且具有優(yōu)異的抗?jié)撟儭⒖蛊诘葯C械性質(zhì),以及抗氧化和耐蝕特性與良好的塑性和 焊接性。
(2)合金添加超繁雜:鎳基合金常添加十種以上之合金元素,用以增進(jìn)不同環(huán)境之耐蝕性;以及固溶強化或析出強化等作用。
(3)工作環(huán)境超惡劣:鎳基合金被廣泛用于各種嚴(yán)苛之使用條件,如航天飛行引擎燃?xì)?室的高溫高壓部份、核能、石油、海洋工業(yè)之結(jié)構(gòu)件,耐蝕管線等。
四、鎳基合金之微組織
鎳基合金的晶體結(jié)構(gòu)主要為高溫穩(wěn)定之 面心立方體(FCC)沃斯田鐵結(jié)構(gòu),為了提高其耐熱性質(zhì),添加了大量的合金元素,這些元素會形成各種二次相,提升了鎳基合金之高溫強度。二次相的種類包含各種形式之 MC、M23C6、M6C、M7C3碳化物,主要分布在晶界,以及如 γ' 或 γ'' 等結(jié) 構(gòu)上為整合性(Coherent)之有序(Ordering)介金屬化合物。γ'與 γ'' 相之其化學(xué)組成大致是Ni3(Al, Ti) 或 Ni3Nb,此類有序相在高溫下非常穩(wěn)定,經(jīng)由它們的強化可得到優(yōu)良的潛變破壞強度。 典型鎳基合金之微組織如圖1:
圖1 典型鎳基合金之微組織
隨著合金化程度的提高,其顯微組織的變化有如下趨勢: γ'相數(shù)量逐漸增多,尺寸逐漸增大,并由球狀變成立方體,同一合金中出現(xiàn)尺寸和形態(tài)不相同的γ'相。此外,在鑄造合金中還出現(xiàn)在凝固過程中形成的γ+γ'共晶,晶界析出不連續(xù)的顆粒狀碳化物并被γ'相薄膜所包圍,這些微組織的變化改善了合金的性能。此外,現(xiàn)代鎳基合金的化學(xué)成份十分復(fù)雜,合金的飽和度很高,因此要求對每個合金元素 (尤其是主要強化元素)的含量嚴(yán)加控制,否則會在使用過程中容易析出其他有害的介金屬相,如σ、Laves相等,將損害合金的強度和韌性。
五、合金元素之作用與牌號
鎳基合金是高溫合金中應(yīng)用廣、強度高的一類合金。其中添加較大量的Ni 為沃斯田鐵相穩(wěn)定元素,使得鎳基合金維持 FCC結(jié)構(gòu)而可以溶解較多其它合金元素,還能保持較好的組織穩(wěn)定性與材料的塑性;而 Cr、Mo和Al則具有抗氧化和抗腐蝕作用,并具有一定的強化作用。鎳基合金的強化依元素作用方式可分為:
(1)固溶強化元素,如W、Mo、Co、Cr和V等,藉由此類原子半徑與基材的不同,在Ni-Fe之基地造成局部晶格應(yīng)變來強化材料;
(2)析出強化元素則如Al、Ti、Nb和Ta等,可以形成整合性有序的A3B型金屬間化合物,如Ni3(Al,Ti)等強化相(γ’),使合金得到有效的強化,獲得比鐵基高溫合金和鈷基合金更高的高溫強度;
(3)晶界強化元素,如B、Zr、Mg和稀土元素等,可加強合金之高溫性質(zhì)。一般鎳基合金的牌號由其所開發(fā)廠家來命名,如Ni-Cu合金又稱為Monel合金,常見如Monel 400、K-500等。Ni-Cr合金一般稱為 Inconel合金,也就是常見之鎳基耐熱合金,主要在氧化性介質(zhì)條件下使用 ,常見如 Inconel 600、625等。若是Inconel合金中加入較高量的Fe來取代Ni,則為Incoloy合金,其耐高溫程度不如鎳基析出硬化型合金,但價格便宜,可用于噴射引擎里溫度較低部份的組件及石化廠反應(yīng)器等,如Incoloy 800H、825等。若于Inconel與Incoloy中加入析出強化元素,如Ti、Al、Nb等,則成為析出硬化型(鐵)鎳基合金,可于高溫下仍保有良好的機械強度與抗蝕性,多用于噴射引擎的組件,如 Inconel 718 、Incoloy A-286 等。而 Ni-Cr-Mo(-W)(-Cu) 合金則稱為哈氏耐蝕合(Hastelloy),其中Ni-Cr-Mo主要在還原性介質(zhì)腐蝕的條件下使用。Hastelloy的代表牌號如C-276、C-2000等。鎳基合金之主要牌號與添加元素之對照可參考圖2:
圖2
六、鎳基合金之性能
1.高溫(瞬時)強度
鎳基合金室溫下就具有較高的拉伸強度 (TS=1,200-1,600;YS= 900-1,300 MPa),且兼具良好的延展性,此一趨勢可維持至高達(dá)圖3
圖3 鎳基合金中強硬之析出相與具延性之基地所形成之復(fù)合概念
包含利用前述以離子與共價鍵結(jié),在常溫下具有高熔點、高強度之γ'或γ''等析出相,搭配滑移系統(tǒng)多而具延展性之沃斯田鐵相基地,以復(fù)合材料之概念得到兼具強度塑性之優(yōu)異機械性質(zhì),使得鎳基合金之應(yīng)用溫度成為金屬材料中最高的圖4:
圖4 各類工程材料依機械強度所劃分之強度-應(yīng)用溫度地圖
2.潛變強度
潛變?yōu)椴牧显诟邷?T/Tm>0.5)恒荷載作用下,緩慢地産生塑性變形的現(xiàn)象,為材料合金由于具有不錯的抗高溫潛變能力,而被廣泛的使用在各種高溫環(huán)境,作為承力件應(yīng)用。潛變的發(fā)生如圖5:
圖5 潛變變形之三個階段,以及溫度對潛變影響之強度-應(yīng)用溫度示意圖
可分為三個階段, 在初步潛變(Primary Creep)階段,變形速率相對較大,但是隨著應(yīng)變的增加發(fā)生加工硬化而減慢。當(dāng)變形速率達(dá)到某一個最小值并接近常數(shù),此時稱為第二階段潛變,或穩(wěn)態(tài)階段潛變 (Secondary or Steady-StateCreep),這是由于加工硬化和動態(tài)回復(fù)達(dá)到平衡的結(jié)果,在工程材料設(shè)計上所要求之潛變應(yīng)變率就是指這一階段的應(yīng)變率。在第三階段(Tertiary Creep),由于頸縮現(xiàn)象,應(yīng)變率隨著應(yīng)變增大而呈指數(shù)性的增長,最后達(dá)到破壞。
應(yīng)力和應(yīng)變率的關(guān)系隨潛變機制的不同而有所不同,一般說來,溫度的升高或是應(yīng)力的增加都會增加穩(wěn)態(tài)潛變的變形速率并縮短潛變壽命。潛變之機制可分為(1)差排潛變:受到高溫的幫助,差排可能沿滑移面發(fā)生滑移,進(jìn)而發(fā)生變形。(2)擴(kuò)散潛變:由原子移動造成,沿晶粒散的稱為Nabarro-Herring Creep,在高溫時為主要機制。沿晶界擴(kuò)散的叫做Coble Creep,在低溫時 為主要機制。因此晶粒越小越容易發(fā)生擴(kuò)散潛變。(3)晶界滑移:因高溫時晶界較弱,材料易沿晶界產(chǎn)生滑移,造成沿晶裂縫。故高溫時晶粒越小越容易產(chǎn)生晶界滑移潛變及沿晶裂縫。金屬的潛變變形常為差排潛變與晶界滑移的交互作用,鎳基合金由于具有介金屬相的析出,可大幅抑制差排潛變,而晶界上析出之碳化物則可幫助抵抗晶界滑移造成之潛變現(xiàn)象,使得鎳基合金相對其他金屬材料具有較優(yōu)異之抗?jié)撟冃再|(zhì)圖6:
圖6 不同合金材料之潛變性質(zhì)比較
此外,從傳統(tǒng)的鑄造方式改以單向性凝固長柱狀晶,抵抗高溫潛變的性質(zhì)會上升,若進(jìn)一步長成單晶時,抗?jié)撟兡芰Ω蠓岣?,故鎳基合金也發(fā)展出方向性共晶凝固、單晶鑄造、粉末冶金等特殊技術(shù),進(jìn)一步增進(jìn)了鎳基合金抵抗高溫潛變的能力。
3.耐蝕性質(zhì)
對材料發(fā)生腐蝕的控制已被視為是工業(yè)上實踐材料經(jīng)濟(jì)節(jié)約佳方式。工業(yè)設(shè)備在設(shè)計端的材料選用并非 只考慮材料價格,后續(xù)更換、保養(yǎng)所需的周期長短與整體使用效率之良窳,以及更重要的安全性等議題等,都需要更精確的列入設(shè)計與選用之考慮。鎳基合金在強還原性腐蝕環(huán)境,復(fù)雜的混合酸環(huán)境,含有鹵素離子的溶液中都具有很好的耐蝕性,鎳基耐蝕合金可以Hastelloy合金為代表,如前所述,Ni元素在晶體學(xué)上能容納較多的合金,來增進(jìn)抵抗腐蝕環(huán)境的能力;且Ni本身就具有一定的抗腐性,如對抗Cl離子的應(yīng)力腐蝕與苛性堿腐蝕具有抵抗能力。而鎳基合金中添加的鈍化多種元素可與基材相形成固溶體,提升了材料的腐蝕電位及熱力學(xué)穩(wěn)定性。如Ni中加入 Cu, Cr,Mo等,提高整體合金的耐蝕性圖7:
圖7 不同合金材料腐蝕電位之示意圖
此外,合金元素能促使合金表面生成致密的腐蝕 產(chǎn)物保護(hù)膜,如形成Cr2O3, Al2O3等氧化層,提供材料抵抗各類腐蝕環(huán)境的保護(hù)層,因此鎳基耐蝕合金通常含有Cr、Al這兩種元素之一或兩者都有,尤其是當(dāng)強度不是合金主要要求時,要特別注意合金的抗高溫氧化性能 和熱腐蝕性能,高溫合金的氧化性能隨合金元素含量的不同而有所差異,盡管高溫合金的高溫氧化行為很復(fù)雜,但通常仍以氧化動力學(xué)和氧化膜的組成變化來表示高溫合金的抗氧化能力,在此將純鎳及主要鎳基合金之耐蝕性質(zhì)分述如下。
純鎳材料如 Ni 200/201(UNS N02200/ UNS N02201)是商業(yè)純鎳(>99.0%)。它具有良好的機械性能和優(yōu)異的抗腐蝕能力,及其它有用物理特性,包括其磁性能、磁致伸縮性能、高的導(dǎo)熱和導(dǎo)電性能等。Ni 200的抗腐蝕能力使得它在面對如食品、人造纖維以及苛性堿等需要保證產(chǎn)品純凈的應(yīng)用中特別有用。在結(jié)構(gòu)應(yīng)用中當(dāng)抗腐蝕能力是主要考慮因素時使用也很廣泛。其它的使用包括天以及零件等。鎳基耐蝕合金包括哈氏合金以及Ni-Cu合金等,主要合金元素是Cr、Mo、Cu等,具有良好的綜合性能,可耐各種酸腐蝕和應(yīng)力腐蝕。最早應(yīng)用Ni-Cu成 份之Monel;此外還有Ni-Cr合金(即鎳基耐熱合金,耐蝕合金中的耐熱腐蝕合金)、Ni-Mo合金、Ni-Cr-Mo合金(即哈氏合金之C系列) 等。以耐蝕特性而言,Ni-Cu合金在還原性介質(zhì)中耐蝕性優(yōu)于Ni,而在氧化性介質(zhì)中耐蝕性又優(yōu)于Cu,在無氧和氧化劑的條件下, 是耐高溫氟氣、氟化氫和氫氟酸的材料;Ni-Cr合金主要在氧化性介質(zhì)條件下使用。可抗高溫氧化和含硫、釩等氣體的腐蝕, 合金中含Cr量在大于13%時才能造成有效的抗蝕作用,而Cr含量越高,其耐蝕性越好, 但在非氧化性介質(zhì)如鹽酸中,耐蝕性較差, 這是因為非氧化性酸不易使合金生成氧化膜,同時對氧化膜還有溶解作用。
鎳基合金中再添加含Mo與Cu等元素,則可增進(jìn)保護(hù)對抗層還原酸之抗腐蝕能力,如Ni-Mo合金主要在還原性介質(zhì)腐蝕的條件下使用,是耐鹽酸腐蝕的一種合金,但在有氧和氧化劑存在時,耐腐性會顯著下降 。Ni-Cr-Mo(-W) 合金則兼有上述 Ni-Cr 與Ni-Mo合金的性能,主要在氧化與還原混合介質(zhì)條件下使用,這類合金在高溫氟化氫氣中、在含氧和氧化劑的鹽酸、氫氟酸溶液中以及在室溫下的濕氯氣中耐蝕性良好。含Mo 鎳基耐蝕合金之重要性在于可同時抵抗氧化酸與還原酸,如鈦及不銹鋼則只耐氧化酸,如哈氏C-276或C-2000合金就是一種含W的Ni-Cr-Mo合金圖8:
圖8 不同合金在還原酸(HCl)中之耐蝕性質(zhì)數(shù)據(jù)
含有極低的硅和碳, 通常被認(rèn)為是萬能的抗腐蝕合金,具有在氧化和還原兩氣氛狀態(tài)中,對大多數(shù)腐蝕介質(zhì)具有優(yōu)異的耐腐蝕性能,以及出色的耐孔蝕、縫隙腐蝕和應(yīng)力開裂腐蝕性能,此類合金因減少了C、Si,所以可以控制碳化物的析出,而更提高其耐腐蝕性能。因為此類之特性,所以廣泛作為化學(xué)設(shè)備等苛刻環(huán)境下的應(yīng)用材料。此外,Ni-Cr-Mo-Cu合金具有既耐硝酸又耐硫酸腐蝕的能力,在一些氧化-還原性混合酸中也有很好的耐蝕性。
七、鎳基合金之生產(chǎn)技術(shù)
傳統(tǒng)之鎳基合金的生產(chǎn)流程為鎳原料→ 鎳合金鑄錠(熔煉)→二次精煉→加工→成品→下游應(yīng)用圖9:
圖9 一般鎳基合金生產(chǎn)之流程圖
其它如針對航天應(yīng)用等之特殊需求,則發(fā)展出如方向性凝固,單晶鑄造,粉末冶金等特殊技術(shù)。本文即針對傳統(tǒng)上生產(chǎn)鎳基合金之關(guān)鍵技術(shù),如熔煉、熱加工、熱處理等做簡要的介紹。
鎳基合金之成分組成以Ni-Cr-Fe為主, 其它元素的添加如Cu、Si、Mn、Al、Ti、Nb、W、C等。一般從文獻(xiàn)可了解這些元素對超合金材料的影響,但若要重組或添加新的合金成份,并了解其在微組織之交互作用, 近來已有以材料性質(zhì)模擬軟件,可進(jìn)行合金系統(tǒng)熱力學(xué)與動力學(xué)的計算,協(xié)助提供高性價比之方向,可提高合金設(shè)計的效率。而合金設(shè)計的實現(xiàn)則須由熔煉技術(shù)來完成,鎳基合金熔煉主要區(qū)分為一般品級的電爐 (Electric Arc Furnace,EAF)+電渣重熔精煉 (Electro-Alag Remelting,EAR)及高品級的真空感應(yīng)熔煉(Vacuum Induction Melting,VIM)+電渣重熔精煉產(chǎn)品。為了熔煉時獲得更純凈化的合金鋼液,減低氣體含量與有害元素含量;同時由于部分合金中有易氧化元素如Al、Ti等存在,以非真空方式冶煉難以控制;更是為了獲得更好的熱塑性,鎳基合金通常采用真空感應(yīng)爐熔煉,甚至用真空感應(yīng)熔煉加真空自耗爐或電渣爐重熔方式進(jìn)行生產(chǎn)。其中VIM圖10:
圖10 真空感應(yīng)熔煉與電渣重熔精煉設(shè)備之示意圖
主要之目的是精準(zhǔn)命中7-12種合金成份,并去除雜質(zhì)元素及有害氣體,再以鑄錠凝固控制技術(shù)維持結(jié)構(gòu)致密無表面缺陷,因是在真 空環(huán)境下進(jìn)行合金熔煉,可限制非金屬氧化夾雜物的形成,以高蒸氣壓去除不需要的微量元素與溶解氣體,例如氧、氫和氮等,來得到精確且均勻的合金組成。VIM完成熔煉之鑄錠可用做ESR之電極以進(jìn)行精煉,ESR (圖10)制程之目的則是為了得到更純凈低雜質(zhì)之鑄錠,即以渣性/精煉控制技術(shù)去除粗大介在物,再以鑄錠凝固控制技術(shù),達(dá)到成份純凈、結(jié)構(gòu)致密與微組織均勻的目標(biāo)。通常用真空感應(yīng)爐熔煉以保證成份與控制氣體及雜質(zhì)含量,并用真空重熔-精密鑄造技術(shù)制成零件。以超合金加工件而言,熔煉方法的選擇會影響不純區(qū)(即成分發(fā)生異常偏析)一般而言,不純度與缺陷(如孔隙)則與合金成分與鑄造技術(shù)有關(guān)。
鎳基合金在加工方面常采用鍛造、軋制等方式型,對于熱塑性差的合金甚至采用擠壓開胚后軋制或用軟鋼(或不銹鋼)包套直接擠壓技術(shù)。一般變形的目的是為了破碎鑄造組織,優(yōu)化微觀組織結(jié)構(gòu)。鎳基合金在高溫時較高之變形阻抗與熱延性的不穩(wěn)定,增加了鎳基合金制程上的困難度。一般鎳基合金強度高,冷、熱加工不易,以C-276為例, 高溫變形阻抗約為不銹鋼之2.4倍;且冷加工之高硬化率使得其強度可至不銹鋼的2倍。而熱加工時除需考慮高溫變形阻抗外,還需考慮不同溫度下熱延性之不同變形阻或夾雜物出現(xiàn)之區(qū)域)的發(fā)生與否,而不純區(qū)則會傷害合金之高溫機械性質(zhì),如圖11:
圖11 鎳基合金Inconel 601于不同溫度下之熱延 性與變形阻抗之?dāng)?shù)據(jù)曲線,顯示于熱延性低 于60%之溫度下行加工易造成裂縫之發(fā)生
以超合金鑄件而抗與熱延性同時允許進(jìn)行加工之溫度范圍,才能視為熱加工制程之工作區(qū)間。加工后或部份鑄造合金需進(jìn)行熱處理,鎳基合金固溶熱處理之目的,為視產(chǎn)品性質(zhì) (如韌性或潛變)之需求,進(jìn)行晶粒尺寸之控制,并以高溫促使發(fā)生再結(jié)晶與應(yīng)力消除, 以及回溶前制程中析出之不良相,如M23C6、δ、η等。以固溶強化型鎳基合金而言,其熱處理程序為(1)升溫至析出物可發(fā)生回溶之溫度,(2)持溫以達(dá)到所需晶粒尺寸,(3) 冷速須控制避免如敏化相M23C6等之析出。
一般而言,固溶處理后機性受到晶粒尺寸與 沿晶析出物之影響,需視合金成份與前制程 狀況調(diào)整固溶處理溫度與時間,以達(dá)到所需之性質(zhì)。此外,含Cr鎳基合金經(jīng)400~800oC 之熱履歷時,碳化鉻(M23C6)會析出于晶界, 造成晶界周圍形成鉻缺乏區(qū) (Cr-depletion Zone),而導(dǎo)致此區(qū)耐蝕性降低,稱為敏化而容易導(dǎo)致沿晶侵蝕(IGA)及沿晶應(yīng)力腐蝕破裂(IGSCC)的發(fā)生。另一方面,沃斯田鐵系析出強化鎳基合金之熱處理則包括 (1)升溫 至析出物回溶之溫度之固溶階段以及(2)于γ/ γ'兩相區(qū)持溫之時效階段。其中固溶使得析出物回溶,基地中 γ' 析出所需元素增加, 并達(dá)成各添加元素之均質(zhì)化,且控制基材 γ 相之晶粒尺寸;而時效階段則可以持溫溫度、時間、冷速與多階段時效來控制 γ' 之體積分率、形貌、尺寸與分布,主要析出物之分布與形貌可影響潛變與耐蝕性質(zhì)。一般而言,強化相常為奈米尺度,以一般金相方法觀察不易。常須藉助倍率較高之穿透式電子顯微鏡(TEM)來掌握析出物形貌。
八、結(jié) 語
近年來,*鎳基合金產(chǎn)量將持續(xù)增加,尤其以石化用之EAF等級及能源/航天用之VIM等級鎳基合金之需求量的增加尤為明顯,其中又以亞洲市場的成長尤為迅速,在航天、能源方面之應(yīng)用將大幅增加。中國臺灣地區(qū)之鎳基合金產(chǎn)業(yè)主要分為接受國外廠商委托之精加工回銷,與能源、石化廠建廠兩大類,其中又以后者產(chǎn)值較大。由于中國臺灣之鎳基合金在與關(guān)鍵技術(shù)之開發(fā)與工業(yè)產(chǎn) 品之生產(chǎn)尚處于發(fā)展中之階段,因應(yīng)能源、節(jié)能環(huán)保、生醫(yī)等新興產(chǎn)業(yè)的蓬勃發(fā)展,為協(xié)助下游取得材料,并提升金屬產(chǎn)業(yè)整體競爭力,中鋼已于2011年結(jié)盟華新,結(jié)合華新精煉能量與中鋼軋延優(yōu)勢,已成立中鋼精密鍛材公司,投入鈦合金、鎳基合金、及模具鋼等特殊合金的生產(chǎn),并希望與國內(nèi)業(yè)界伙伴攜手合作,期能為國內(nèi)金屬產(chǎn)業(yè)的升級與發(fā)展共創(chuàng)佳績。